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ABSTRACT 

Background: Adverse childhood experiences (ACEs), such as abuse or chronic stress, program 

an exaggerated adult inflammatory response to stress. Emerging rodent research suggests that the 

gut microbiome may be a key mediator in the association between early life stress and 

dysregulated glucocorticoid-immune response. However, ACE impact on inflammatory response 

to stress, or on the gut microbiome, have not been studied in human pregnancy, when 

inflammation increases risk of poor outcomes. The aim of this study was to assess the 

relationships among ACE, the gut microbiome, and cytokine response to stress in pregnant 

women.  

Methods: Physically and psychiatrically healthy adult pregnant women completed the Adverse 

Childhood Experiences Questionnaire (ACE-Q) and gave a single stool sample between 20 and 

26 weeks gestation. Stool DNA was isolated and 16S sequencing was performed. Three 24-hour 

food recalls were administered to assess dietary nutrient intake. A subset of women completed 

the Trier Social Stress Test (TSST) at 22-34 weeks gestation; plasma interleukin-6 (IL-6), 

interleukin-1β (IL-1β), high sensitivity C-reactive protein (hsCRP), tumor necrosis factor α 

(TNF-α), and cortisol were measured at four timepoints pre and post stressor, and area under the 

curve (AUC) was calculated. 

Results: Forty-eight women completed the ACE-Q and provided stool; 19 women completed the 

TSST. Women reporting 2 or more ACEs (high ACE) had greater differential abundance of gut 

Prevotella than low ACE participants (q=5.7x10^-13). Abundance of several gut taxa were 

significantly associated with cortisol, IL-6, TNF-α and CRP AUCs regardless of ACE status. IL-

6 response to stress was buffered among high ACE women with high intake of docosahexaenoic 

acid (DHA) (p=0.03) and eicosapentaenoic acid (EPA) (p=0.05).  
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Discussion: Our findings suggest that multiple childhood adversities are associated with changes 

in gut microbiota composition during pregnancy, and such changes may contribute to altered 

inflammatory and glucocorticoid response to stress. While preliminary, this is the first study to 

demonstrate an association between gut microbiota and acute glucocorticoid-immune response to 

stress in a clinical sample. Finally, exploratory analyses suggested that high ACE women with 

high dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) had a dampened inflammatory 

response to acute stress, suggesting potentially protective effects of ω-3s in this high-risk 

population. Given the adverse effects of inflammation on pregnancy and the developing fetus, 

mechanisms by which childhood adversity influence the gut-brain axis and potential protective 

factors such as diet should be further explored.  
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1. INTRODUCTION 

History of adverse childhood experiences (ACEs), such as neglect, abuse, or chronic household 

dysfunction, are associated with impaired immune function (Carpenter et al., 2010; Danese et al., 

2007; Fagundes et al., 2013; Gouin et al., 2012b; Kiecolt-Glaser et al., 2011) and dysregulated 

hypothalamic pituitary adrenal (HPA) axis function in adulthood (Ehrlich et al., 2016; Lovallo et 

al., 2012). While recent research from our laboratory indicates dysregulated HPA response 

among high ACE women postpartum (Morrison et al., 2017), ACE impact on inflammatory 

response to stress has not been studied during pregnancy. Maternal ACE history is associated 

with lower offspring gestational age and weight at delivery (Smith et al., 2016), and recent work 

suggests maternal cortisol (Gillespie et al., 2017) or elevated baseline interleukin (IL)-6 (Miller 

et al., 2017) may mediate this. Intriguingly, emerging rodent research indicates that early life 

stress also alters the gut microbiome (Jašarević et al., 2017, 2015), and the gut microbiome is 

known to influence inflammation and HPA axis function (Sudo, 2014). This raises the possibility 

that the relationship between ACE and dysregulated neuroendocrine-immune function may be 

mediated by the gut microbiota. However, ACE impact on gut microbiota has not been studied in 

humans, nor have associations between gut microbiota and glucocorticoid-immune function. The 

aim of this study was to examine the impact of ACE on proinflammatory cytokine and HPA 

response to stress during pregnancy, and to characterize potential mediators, namely, gut 

microbiota and diet. 

 

1.1 Adverse Childhood Experiences and Inflammation 

ACE history has been associated with elevated baseline C-reactive protein (CRP) (Danese et al., 

2007; Taylor et al., 2006), IL-6 (Carpenter et al., 2010; Slopen et al., 2010), nuclear factor κB 
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(NF-κB) (Pace et al., 2012), and tumor necrosis factor (TNF)-α (Kiecolt-Glaser et al., 2011) in 

non-pregnant adults. Those who have experienced ACEs show an exaggerated inflammatory 

response to acute laboratory stress (Trier Social Stress Test; TSST) (Carpenter et al., 2010), 

larger IL-6 response to daily stressors (Gouin et al., 2012a), and larger ex vivo cytokine 

responses to microbial challenge or lipopolysaccharide (LPS) stimulation (Miller et al., 2011) 

compared with those without a history of childhood adversity. Individuals with exposure to 

childhood adversity also evidence dysregulated HPA axis function (Bunea et al., 2017), 

including blunted cortisol response to the TSST or Montreal Imaging Stress Task (MIST) 

(Carpenter et al., 2007; Lovallo, 2013; Suzuki et al., 2014; Voellmin et al., 2015), blunted 

cortisol awakening response (CAR) (Kumsta et al., 2017), greater heterogeneity in diurnal 

cortisol patterns (Gonzalez et al., 2009), low hair cortisol (Kalmakis et al., 2015), and blunted 

cortisol response to a separation stressor at six months postpartum (Morrison et al., 2017). 

During pregnancy specifically, high ACE women show lower baseline cortisol (Shea et al., 

2007), greater hair cortisol levels (Schreier et al., 2015), increased cortisol response to daily 

stress (Bublitz and Stroud, 2012), elevated CAR in the context of poor current perceived family 

function (Bublitz et al., 2014), and greater hair cortisol associated with depressive or somatic 

symptoms (Bowers et al., 2018). Together, this suggests early life patterning of the central 

nervous system (CNS) and its bidirectional interactions with the neuroendocrine system and 

immune system. Poorly controlled inflammation during pregnancy may elevate risk for low birth 

weight (Atta et al., 2016; Marzi et al., 1996), low gestational age at delivery (Sorokin et al., 

2010), or spontaneous preterm birth (Bastek et al., 2011; Gillespie et al., 2016; Pearce et al., 

2010), making the impact of ACE on HPA and cytokine response to acute stress during 

pregnancy an important question.  
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1.2 The Gut Microbiome, Stress and Inflammation 

The microbiota (bacteria, fungi, archaea, viruses) and their genetic material comprise the gut 

microbiome. Evidence suggests the gut microbiota influence inflammation and HPA axis 

function (Rea et al., 2016; Sudo, 2014). For instance, low diversity of gut microbial communities 

was associated with elevated inflammation in rodents (Bailey et al., 2011) and in humans (Röytiö 

et al., 2017). Relative abundance of specific gut bacteria including Akkermansia, Flexibacter and 

Prevotella have been associated with inflammation in rodents (Ganesh et al., 2013; Pusceddu et 

al., 2015), and Megasphaera and Proteobacteria were associated with elevated inflammatory 

markers in humans (Mukhopadhya et al., 2012; Schirmer et al., 2016). Conversely, Dialister and 

Faecalibacterium are associated with lower inflammation (Martínez et al., 2013; Sokol et al., 

2008). 

 

The gut microbiota are stress sensitive. Early life stress (ELS), the functional equivalent of ACE 

in rodent models, clearly alters the microbiome, persisting through adulthood (Jašarević et al., 

2017, 2015). Male rats who were stressed neonatally had altered gut microbiota as adults, 

particularly elevated levels of Enterobacteria and Bacteroides, compared with pups who were 

not stressed (García-Ródenas et al., 2006).  In addition to altered gut microbiota, neonatally 

stressed male rats exhibited elevated plasma corticosterone and elevated inflammatory response 

to LPS challenge as adults, compared with male rats who did not undergo the separation stressor 

(O’Mahony et al., 2009). Similarly in female rats, maternal separation stress at postnatal days 

two to twelve reduced the ratio of Firmicutes to Bacteroidetes in the adult gut, and increased 

taxa previously associated with inflammation, including Akkermansia, Flexibacter and 
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Prevotella (Pusceddu et al., 2015). Intriguingly, supplementation with the omega-3 (ω-3) PUFAs 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in adulthood corrected the 

Firmicutes:Bacteroidetes ratio to that of non-ELS rats, increased levels of Actinobacteria and the 

butyrate-producing Butyrivbrio, and reduced abundance of Proteobacteria (Pusceddu et al., 

2015). The authors proposed that EPA/DHA may thus exert its anti-inflammatory effects by 

modulating gut microbiota composition.  

 

Stress also disrupts the gut microbiome in humans, although impact of ACE specifically is 

unknown (Kato-Kataoka et al., 2016; Knowles et al., 2008). In adults exposed to trauma, those 

who developed PTSD had lower total gut abundance of the phyla Actinobacteria, Lentisphaerae, 

and Verrucomicrobia, compared with those who did not develop PTSD (Hemmings et al., 2017). 

In this sample, a sub-analysis revealed that history of childhood trauma was associated with 

lower relative abundance of Actinobacteria and Verrucomicrobia (Hemmings et al., 2017). 

However, childhood trauma trended toward a significant association with PTSD diagnosis, 

making it difficult to determine the effect of childhood trauma independent of current psychiatric 

functioning. During pregnancy, maintenance of diversity in gut bacterial communities was 

associated with less systemic inflammation (Röytiö et al., 2017). Whether ACE is associated 

with altered gut communities during pregnancy is unknown, but a critical question, as maternal 

gut microbiota not only have a potential influence on inflammation (Schirmer et al., 2016), but 

produce metabolites necessary for the developing fetus (Gomez de Agüero et al., 2016), thus 

influencing fetal development in multiple ways. 
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1.3 Dietary Impact on Gut Microbiome and Inflammation 

Diets high in saturated fats, trans fats, or omega-6 (ω-6) polyunsaturated fatty acids (PUFAs), 

and low in omega-3 (ω-3) PUFAs, are associated with elevated serum inflammatory markers 

such as IL-6,
 
CRP, and TNF-α (Alfano et al., 2012; Kiecolt-Glaser et al., 2012, 2007; Lopez-

Garcia et al., 2004). In addition to directly stimulating IL-6 and TNF-α production (Ajuwon and 

Spurlock, 2005; Suganami et al., 2005), dietary intake of saturated fat and ω-6 fatty acids 

impacts gut microbial community composition (Fava et al., 2013; Myles, 2014; Wu et al., 2011). 

Evidence suggests that altering the gut microbiome via diet may alter peripheral inflammatory 

markers (Macfarlane et al., 2013; Pusceddu et al., 2015), indicating that dietary intake of 

nutrients such as ω-3 PUFAs may modulate relationships between gut microbiota and 

inflammation.  

 

1.4 Aims and Hypotheses 

The aim of this study was to examine the impact of ACE on inflammation during pregnancy, 

including careful assessment of potential mediators of this relationship, namely, gut microbiota 

and diet. We hypothesized that 1) women with multiple ACE exposures (high ACE) would have 

an exaggerated plasma proinflammatory cytokine response and dampened plasma cortisol 

response to acute stress; 2) high ACE women would have different relative abundance of gut 

taxa compared with low ACE women; 3) abundance of particular gut taxa would correlate with 

proinflammatory cytokine response to acute stress; 4)  high dietary intake of ω-3 PUFAs would 

dampen inflammatory cytokine response to acute stress. 
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2. METHODS 

2.1 Study Design and Participants 

Pregnant women ages 18-45 years old were recruited at 20 to 26 weeks gestation. Women were 

recruited from among participants in an ongoing cohort study of pregnant women (National 

Institute of Nursing Research RO1NR014784-01), a larger study examining pregnancy 

outcomes. Recruitment was targeted to balance high versus low ACE by administering the ACE 

scale at the screening visit, and the distribution was evaluated weekly.  Participants were 

required to be fluent in written and spoken English and able to provide written informed consent. 

Exclusion criteria were current tobacco use, chronic steroid or immunosuppressive use, history 

of cancer or diabetes, chronic kidney disease, HIV, hypertension, preeclampsia, history of 

anemia, history of bariatric surgery, vegan diet, use of recreational drugs or psychiatric 

medications in the past 6 months, multiple gestation pregnancy or known fetal abnormalities. 

Participants provided written informed consent and underwent screening to ensure adherence to 

the inclusion and exclusion criteria.  

 

2.2 Measures 

2.2.1 Demographics and health. At the screening visit (20 to 26 weeks gestation), participants 

provided demographic and health data including age, education level, income, marital status, 

race, names and duration of current and past medications, vitamin and supplement use, 

significant illnesses/surgeries, age at menarche, menstrual cycle and obstetric history, caffeine 

and nicotine use. Weight and height were measured. 
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2.2.2 Childhood adversity. The Adverse Childhood Experiences Questionnaire (ACE-Q) was 

administered at screening to assess exposure to childhood adversity. The ACE-Q is a well 

validated scale that has been used in numerous studies to assess exposure to adversity before the 

age of 18 and associations with later health outcomes (Felitti et al., 1998). The 10-item 

questionnaire assesses history of emotional, physical or sexual abuse, childhood neglect, and 

household dysfunction. Scores range from 0-10 and reflect the occurrence(s) of event(s), not 

their frequency or severity. An ACE score >=2 is associated with increased risk of preterm birth 

(Christiaens et al., 2015) and altered HPA axis function during pregnancy (Bowers et al., 2018) 

and postpartum (Morrison et al., 2017). Thus, participants scoring 2 or greater were considered 

“high ACE” while subjects with ACE score of <2 were considered “low ACE.” 

 

2.2.3 Psychological assessments. At the screening visit, participants completed psychological 

assessments. A Structured Clinical Interview for DSM (SCID) (First et al., 2002) was 

administered to confirm healthy psychiatric status. Participants completed additional rating 

scales including Traumatic Life Events Questionnaire (TLEQ) (Kubany et al., 2000), Spielberger 

State Trait Anxiety Inventory (STAI; State -S, Trait -T) (Spielberger et al., 1983), Pittsburgh 

Sleep Quality Index (PSQI) (Buysse et al., 1989), Edinburgh Postnatal Depression Scale (EPDS) 

(Cox et al., 1987) and the Perceived Stress Scale (PSS) (Cohen et al., 1983).  

  

2.3 Stool sampling and sequencing. Stool was collected at 20-26 weeks gestation. DNA was 

isolated from approximately 200 mg stool using the MoBio PowerSoil® DNA Isolation Kit 

(Catalog # 12888-50). 16S sequencing was performed; primers annealing to the V1-V2 region of 

the 16S bacterial gene were used for amplification as described previously (McKenna et al., 
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2008). Purified products from the samples were pooled in equal amounts and sequenced using 

Illumina MiSeq; positive and negative controls were used (Kim et al., 2017). Sequence data was 

processed using Quantitative Insights Into Microbial Ecology (QIIME) version 1.9 (Caporaso et 

al., 2010). Reads were joined to form a complete amplicon sequence for the V1-V2 region and 

sequences were filtered to remove low quality reads using default parameters in QIIME. 

Operational Taxonomic Units (OTUs) were generated at 97% sequence similarity using 

UCLUST v. 1.2.22 (Edgar, 2010). A phylogenetic tree was inferred from the OTU data using 

FastTree2 (Price et al., 2010). Similarity between samples was assessed by weighted and 

unweighted UniFrac distance (Lozupone and Knight, 2005). Global differences in bacterial 

community composition were visualized using principal coordinates analysis. Alpha diversity 

was measured in number of distinct OTUs at 10,000 read depth and Shannon index.  

 

2.4 Food Recall. In the two weeks following the screening visit, approximately one week prior to 

stool sampling, participants received three unannounced phone calls from a research nutritionist 

at the university’s Clinical Translational Research Center (CTRC). During each 15-minute phone 

call, participants completed a 24-hour food recall. The data from these recalls were analyzed 

using Nutrition Data System for Research software (Nutrition Coordinating Center, University of 

Minnesota), which provides quantitative information on 166 nutrients.  

  

2.5 Laboratory stressor. At 22-34 weeks gestation, participants returned to the laboratory for the 

TSST (Kirschbaum et al., 1993). The TSST is a standardized laboratory stressor lasting 20 

minutes that requires the participant to perform mental arithmetic and to give a speech in front of 

a panel of three panelists. Trained professional standardized patients from the Penn Medicine 
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Standardized Patient Program served as panelists. Participants were asked to refrain from eating, 

using caffeine and using nicotine for 90 minutes prior to initiation of the TSST. Timing was 

standardized so that participants initiated the TSST between 11:00 and 13:00. Prior to initiating 

the TSST, informed consent was confirmed and a catheter was placed (T-35) for serial blood 

draws. The participants rested for 30 minutes and completed questionnaires (EPDS, PSQI, PSS 

and STAI). Baseline blood was drawn 5 minutes prior to TSST; T-5); the TSST was initiated at 

T=0. The TSST lasted for 20 minutes, concluding at T+20. At T+20, participants completed the 

STAI-S. Blood was drawn 10, 45 and 120 minutes post TSST (T+30, T+65, T+140). At each 

blood collection timepoint, 3.5 mL blood was collected. Immune and HPA markers assessed 

were IL-6, IL-1β, CRP, TNF-α, and cortisol.  

 

2.6 Cytokine and cortisol assays. Assessment of high sensitivity (hs) IL-1β, IL-6, and TNF-α in 

serum was performed using a solid phase protein immunoassay that uses spectrally encoded 

antibody-conjugated beads as the solid support (Luminex). Following manufacturer instructions, 

results were obtained by monitoring the spectral properties of the capture beads while 

simultaneously measuring the quantity of associated fluorophore. hsCRP and cortisol were 

assessed in serum samples using a solid phase sandwich enzyme linked-immuno-sorbent assay 

(ELISA). An antibody specific for each tested analyte was coated onto the wells of microtiter 

strips. Following manufacturer instructions, results were obtained by reading the absorbance of 

each well at a specified wavelength. 

 

2.7 Statistical Methods 
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Data was examined descriptively and outcomes tested for normality using Kolmogorov-Smirnov 

test statistics and normal probability plots. Area under the curve (AUC) with respect to the 

ground was calculated as the total sum of the area from the first time point to the last time point, 

as a summary measure for cytokines and cortisol. Linear regression models were used to 

examine cortisol and cytokine AUC between ACE groups as well as correlations with dietary 

intake. Cortisol responder status was also calculated as a secondary measure of HPA axis 

response (Herbison et al., 2016; Maki et al., 2015; Schommer et al., 2003); cortisol responders 

were defined as those participants with a positive change from baseline to peak. Binomial 

generalized linear models were used to test associations with the binary cortisol responder 

outcome. Linear mixed effects models were also used to account for repeated measures of 

cytokines, cortisol, and STAI scores from pre to post stressor. Time was treated as a categorical 

variable to account for nonlinear trends. IL-6 AUC was transformed for normality and model 

fitting using the natural logarithm. Nutrition variables were log transformed when there was a 

benefit to model fit and normality. Participants with BMI greater than 40, classified as Class III 

or “extreme” obesity by the Centers for Disease Control (CDC), were discarded from the data in 

models with cytokine outcomes; obesity is associated with elevated proinflammatory cytokines 

and thus a BMI of 35-40 is often used as a cutoff in studies utilizing the TSST to induce a 

cytokine response to stress (Christian and Porter, 2014; Derry et al., 2013; McInnis et al., 2014). 

Models including nutrition variables were adjusted for total energy when appropriate. Total 

energy was scaled for convergence in mixed models with inflammatory dependent values and 

nutrition covariates. For microbiome analyses, community-level differences between sample 

groups was assessed with Permutation Multivariate Analysis of Variance (PERMANOVA) on 

the weighted and unweighted UniFrac distances; associations between microbiome composition, 
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ACE and proinflammatory cytokine response to TSST were assessed, controlling for gestational 

age at time of stool collection, BMI, and dietary fiber intake, as these are factors that have been 

shown in other research to impact the gut microbiome (Koren et al., 2012; Ottosson et al., 2018; 

Wu et al., 2011). Differential abundance was assessed in taxa with >1% mean abundance across 

samples using generalized linear models; multiple tests were corrected with the Benjamini-

Hochberg method. Within the microbiota analyses, a false discovery rate (fdr, or q) < 0.05 were 

considered significant. In all other analyses, p < 0.05 was considered significant, and t-values are 

shown to indicate effect size. The study was powered such that a sample of n=48 would provide 

sufficient power to detect a moderate effect size (f
2
 = 0.25, alpha = 0.05) of ACE on gut 

microbial communities in a regression model containing three predictors, and a sample of n=20 

would provide sufficient power to detect a large effect size (f
2
 = 0.45, alpha = 0.05) of ACE on 

inflammatory response to stress, based on effects observed in previous research (Carpenter et al., 

2010). Analyses were performed with R Version 3.2.3 and 3.4.3.  

 

3. RESULTS  

3.1 Sample Characteristics 

Forty-eight women completed the ACE-Q and other psychological measures and provided stool 

for sequencing; a subset of 19 women completed the TSST. Participant demographic features 

and baseline psychological measures are presented in Table 1. High (>=2) and low (<2) ACE 

participants were similar in demographics and psychiatric health (p’s > 0.05), although high 

ACE participants were significantly younger (M = 25.98, SD = 4.99) than low ACE participants 

(M = 29.80, SD = 5.21) (t(45.92) = 2.60, p = 0.013) (Table 1). One woman who was taking 
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antibiotics in the week prior to stool collection was excluded from microbiome analysis. Two 

women with BMI > 40 were excluded from cytokine analyses.  

 

3.2 Psychological Measures, ACE Exposure 

The high ACE group had significantly higher total ACE score (Median = 3, IQR = 1.5) than the 

low ACE group (Median = 0, IQR = 01) (W = 0, p = 1.35e-9). Low and high ACE groups did not 

differ in scores on PSS, EPDS, STAI-S, STAI-T, or PSQI (p’s > 0.05) (Table 1). High ACE 

participants reported significantly more traumatic events on the TLEQ (Median = 7.0, IQR = 

10.5) than low ACE participants (Median = 4.0, IQR = 4.0) (W = 165, p = 0.011) (Table 1). 

 

3.3 Dietary Macronutrient Intake 

There were no significant differences in dietary intake of daily total kilocalories, total fat, 

cholesterol, fiber, saturated fat, mono- or polyunsaturated fat, trans fats, total ω-3 PUFAs, nor 

specific ω-3 or ω-6 fatty acids (e.g. EPA, DHA) by ACE group (p’s > 0.05) (Table 2). Mean 

time from food recall to stool sampling was 0.65 weeks (SD = 0.67) which is  < 5 days.  

 

3.4 Subjective Response to Acute Stress 

The TSST was subjectively stressful, increasing STAI-S score by 17 points on average (t(18.00) 

= 6.40, p = 5.01e-6). Pre to post change in STAI-S did not differ by ACE group (t(17.00) = 0.83, 

p = .420) (Table 3).  

 

3.5 Cytokine, and Cortisol Response to Acute Stress 

3.5.1 ACE Associations with Cytokine and Cortisol Response to Acute Stress 
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There were no significant differences between high and low ACE participants in terms of 

cytokine AUC response to stress (CRP: t(13.48) = .156,  p  =  0.879; IL-6: t(10.27) = -.100,  p 

=.922; TNF-α: t(13.46) = -.163, p = 0.873). Similarly, there were no significant differences 

between high and low ACE women in cortisol AUC (t(17) = -.848, p = .408). However, high 

ACE women were less likely to be cortisol responders (z(17) = -2.34,  p=0.019). 

 

3.6 Gut Microbiome 

3.6.1 ACE Associations with Gut Microbiota 

Regarding ACE influence on the gut microbiome, there were no differences between ACE 

groups for richness (p = 0.82), Shannon index (p= 0.58), nor UniFrac distances (p’s > 0.05). 

Controlling for gestational age at time of stool collection, BMI, and dietary fiber intake, high 

ACE participants had higher differential abundance of Prevotella (FDR-adjusted p-value, 

q=5.7x10^-13), and trend toward lower abundance of Erysipelotrichaceae (species previously in 

Eubacterium genus) (p=0.019, q=0.15) and Phascolarctobacterium (p=0.041, q=0.22) than low 

ACE participants (Figure 1).  

 

3.6.2 Gut Microbiota Associations with Cytokine and Cortisol Response to Acute Stress  

Controlling for gestational age at time of stool collection, BMI, and dietary fiber intake, IL-6 

AUC was positively associated with abundance of Bacteroides (q<0.001), and negatively with 

Clostridiales (q=0.033), Lachnospiraceae (q=0.0033), Dialister (q=0.0038), and 

Enterobacteriaceae (q=0.0038) (Figure 2). Similarly, TNF-α AUC was positively associated 

with abundance of Bacteroides (q=0.0006), Prevotella (q=0.015), and Megasphaera (q=0.015) 

and negatively with Ruminococcaceae (q=0.0006) (Figure 2). CRP AUC was positively 



  

 

 18 

associated with abundance of Ruminococcaceae (q=0.034) and Megasphaera (q=0.027) (Figure 

2). Finally, cortisol response to stress was positively associated with abundance of Rikenellaceae 

(q=0.019) and Dialister (q<0.001), and negatively with Bacteroides (q=0.019) (Figure 2). 

 

3.7 Dietary Fatty Acid Associations with Cytokine Response to Acute Stress 

Among the proinflammatory cytokines measured, only TNF-α was significantly associated with 

dietary fatty acid intake. Dietary saturated fat (t(13) = -3.036, p = 0.009) was associated with 

smaller TNF-α AUC, while arachidonic acid (t(13) = 3.39, p = 0.004) and docosapentaenoic acid 

(DPA) (t(12) = 3.55, p = 0.003) were associated with greater TNF-α AUC. Exploratory analyses 

indicated that dietary intake of ω-3 PUFAs interacted with ACE to predict proinflammatory 

cytokine response to TSST. There was a significant ACE x DHA interaction for IL-6 AUC, in 

which high ACE women with high intake of the ω-3 PUFA DHA exhibited a lower IL-6 AUC 

(t(11) = -2.413, slope: low ACE =.106, high ACE = -.285, p = 0.03) (Figure 3). There was a 

trend-level interaction for ACE x EPA, so that in high ACE women, high intake of the ω-3 

PUFA EPA was associated with lower IL-6 AUC (t(11) = -2.181, slope: low ACE = .093, high 

ACE = -.244,  p = 0.05). Similarly, there was a trend-level stearidonic acid x ACE interaction for 

IL-6 AUC, in which high intake of the ω-3 PUFA stearidonic acid, a precursor of EPA, 

associated with lower IL-6 AUC among high ACE women (t(11) = -2.087, slope: low ACE = 

.027, high ACE = -.288,  p = 0.06). 

 

 

4. CONCLUSIONS 
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This study examined associations among ACE, gut microbiota, and inflammatory and cortisol 

response to stress during pregnancy. Our findings indicate that multiple childhood adversities are 

associated with dampened HPA response and altered gut microbiota composition during 

pregnancy. This is to our knowledge the first study to find associations between specific gut taxa 

and inflammatory and cortisol response to an acute laboratory stressor. While ω-3 PUFA intake 

did not dampen inflammatory cytokine response to acute stress in the overall sample, exploratory 

analyses indicated that high ACE women with high dietary intake of the ω-3 PUFA DHA, IL-6 

response to stress was dampened, with a similar trend for EPA.  

Our finding on ACE impact on HPA response to acute stress, that is, physically and 

psychiatrically healthy high ACE women at 22-34 weeks gestation were less likely to be cortisol 

responders than low ACE women, was consistent with our previous research in postpartum 

women (Morrison et al., 2017). Our previous translational study found that high ACE postpartum 

women exhibited a blunted cortisol response to acute stress, mirroring hyporesponsive HPA 

function in postpartum female mice exposed to ELS (Morrison et al., 2017).  However, in the 

present sample there was no main effect of ACE on proinflammatory cytokine response to stress. 

This is discordant with past research suggesting that exposure to childhood adversity is 

associated with an exaggerated proinflammatory response to the TSST (Carpenter et al., 2010; 

Tell et al., 2018). These studies used different measures of childhood adversity (e.g. trauma 

exposure) (Carpenter et al., 2010) in different populations (e.g. breast cancer patients) (Tell et al., 

2018), which may explain why our results differ. There is also wide variation in cutoff scores 

across studies when categorizing exposure to childhood adversity, although an ACE score of >=2 

has been associated with altered HPA axis function during pregnancy (Bowers et al., 2018) and 

postpartum (Morrison et al., 2017), leading us to posit that this was an appropriate cutoff score. It 
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is also possible that, given the distribution of ACE scores within our sample (Table S2), we did 

not have sufficient participants with severe ACE exposure to have an effect. Most likely, 

pregnancy impacted cytokine response to stress; a similar study that utilized the TSST found that 

pregnant women had a dampened IL-6 response to the TSST compared with non-pregnant 

women (Christian et al., 2013). However, our result is similar to findings in which history of 

childhood abuse was not directly associated with baseline IL-6 during pregnancy, but mediated 

by another factor (in that case, BMI) (Mitchell et al., 2018). While not powered for a mediation 

analysis, exploratory analyses indicated that dietary intake of ω-3 PUFAs, particularly DHA, was 

associated with a dampened inflammatory response to acute stress among high ACE women. 

This is consistent with work in non-pregnant adults showing that dietary intake of ω-3 PUFAs 

(Alfano et al., 2012; Caughey et al., 1996; Rallidis et al., 2003), and similarly plasma and 

erythrocyte membrane ω-3 PUFA levels (Ferrucci et al., 2006; Kiecolt-Glaser et al., 2007; Maes 

et al., 2000) are negatively associated with a number of inflammatory markers. A recent study 

found that during pregnancy, a diet high in inflammation-promoting foods elevated levels of 

serum TNF-α, which was further exacerbated in women with high levels of stress (Lindsay et al., 

2018). A low DHA:AA ratio in red blood cells during pregnancy was associated with greater 

inflammation and higher risk of preterm birth among African-American women (Christian et al., 

2016), again underscoring potential risk of elevated peripheral inflammation to maternal-fetal 

health. During pregnancy, EPA-DHA supplementation reduced peripheral inflammation 

(Haghiac et al., 2015), placental inflammation (Lager et al., 2017), and salivary cortisol response 

to the TSST (Keenan et al., 2014) compared with placebo. Given these associations among 

inflammation, diet and stress, future studies should assess dietary ω-3 PUFA supplementation 

specifically in high ACE pregnant women.  
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Within the larger sample of forty-eight pregnant women, those who had experienced multiple 

ACEs had greater differential abundance of gut Prevotella than low ACE women, and trended 

toward lower Erysipelotrichaceae taxa and Phascolarctobacterium within the Firmicutes 

phylum, after controlling for gestational age at stool collection, BMI, and dietary fiber intake. 

Critically, these findings are consistent with rodent models indicating ELS produces a lasting 

impact on gut microbiota (García-Ródenas et al., 2006; O’Mahony et al., 2009; Pusceddu et al., 

2015). Particularly, ELS increased Prevotella and reduced the Firmicutes:Bacteroidetes ratio in 

rats (Pusceddu et al., 2015), paralleling the elevated Prevotella and reduced abundances of 

Firmicutes taxa in our cohort. Intriguingly, among rodents exposed to ELS, EPA/DHA 

supplementation in adulthood corrected the Firmicutes:Bacteroidetes ratio to that of non-ELS 

rats, suggesting that EPA/DHA may exert anti-inflammatory effects by modulating gut 

microbiota composition (Pusceddu et al., 2015). Our findings align with rodent literature 

indicating that stress during early life provokes a stable and persisting influence on microbiota 

composition, and extends this to pregnancy. Whether modulation of inflammatory response by 

PUFAs in high ACE women is mediated by the gut microbiota remains a question for future 

research. 

 

Relative abundance of several gut taxa were associated with cytokine and cortisol response to 

acute stress. Dialister was negatively associated, while Bacteroides and Megasphaera were 

positively associated, with proinflammatory cytokine response. Ruminococcaceae showed mixed 

relationships with proinflammatory cytokine response. Regarding cortisol response, Dialister 

was positively associated and conversely Bacteroides was negatively associated with cortisol. 



  

 

 22 

While stress during pregnancy concurrently alters the gut microbiota and increases inflammation 

in mice (Gur et al., 2017), no prior human studies, in pregnant or non-pregnant samples, have 

reported on associations between gut microbiota and cytokine or cortisol response to acute stress. 

However, Dialister has been associated with lower baseline IL-6 in healthy adults (Martínez et 

al., 2013), and Megasphaera was associated with greater ex vivo stimulated IFN-γ production by 

peripheral blood mononuclear cells (PBMCs) (Schirmer et al., 2016). These results are consistent 

with findings in our sample, in which Dialister was negatively associated with proinflammatory 

cytokine response, and Megasphaera was positively associated with proinflammatory cytokine 

response. While discussion of potential mechanisms linking the gut-brain axis and inflammation 

is beyond the scope of this article, it is believed that gut microbiota metabolites such as 

neuropeptides and short chain fatty acids (SCFAs) interact with the CNS, activating microglia, 

which modulate HPA activity and in turn cytokine release (Rea et al., 2016). Although the 

present study provides information solely on associations among ACE, the gut microbiome, and 

stress response, this provides groundwork for future mechanistic or intervention studies.  

 

4.1 Strengths and Limitations 

A key strength of this study was careful screening to ensure a psychiatrically healthy sample.  In 

previous studies, it has been difficult to parse the impact of ACE versus current psychiatric 

function, as individuals with significant ACE exposure are at greater risk for psychiatric 

diagnoses. However, this indicates a resilient sample of women, limiting the generalizability of 

these findings. There is an emerging literature on protective factors that may provide resilience 

to ACEs, including attachment style, positive childhood experiences, emotion regulation, and 

coping style (Beutel et al., 2017; Dagan et al., 2017; Gouin et al., 2017; Narayan et al., 2018; 
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Poole et al., 2017), which were not assessed in this study.  In addition, there were relatively few 

women in the sample who had experienced severe adversity (i.e. ACE > 4), which may have 

impacted results. The study sample presented here was selected to have equal balance of low and 

high ACE women, and therefore does not reflect the distribution of ACE exposure in the general 

population. Therefore, estimated associations that do not adjust for ACE exposure represent 

associations in an enriched population and may not be generalizable. The sample included only 

pregnant women, making it difficult to generalize results to nonpregnant women or men. 

Another limitation was that blood levels of PUFAs were not measured directly. Regarding the 

subsample of women who completed the TSST, the mean time from stool sampling to TSST 

completion was six weeks. Ideally, stool sampling would have occurred in closer proximity to 

the TSST, to provide a more precise view of correlations between gut microbiota and 

inflammatory response to stress. However, we did control for gestational age at time of stool 

collection in microbiome analyses, to attempt to control for potential differences based on 

gestational timing. Further, a study that assessed microbiota weekly across pregnancy found no 

significant changes in alpha diversity, beta diversity or Shannon index from 10 to 40 weeks 

gestation (DiGiulio et al., 2015), suggesting that the microbiota we observed at stool sampling 

was likely similar to the community profile existing several weeks later at TSST administration. 

Finally, this study was not appropriately powered to test a mediation or moderation model of the 

relationships among ACE, the gut microbiome, and cytokine response to stress with potential 

modulation by dietary PUFA intake. This study examined associations among these factors 

respectively, but given the sample size, a full mediation or moderation model could not be tested. 

In particular, the sample size of the subset of participants who completed the TSST was small, 

and exploratory analyses of interactions between ACE and dietary PUFA were underpowered 
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and warrant additional investigation. Thus, replication is needed in a larger sample. A larger 

sample would allow mediation and moderation analyses to be performed, to examine the 

potential pathway from ACE to gut microbiome (with moderation by PUFA intake) to 

inflammation.  

 

4.2 Conclusions 

Our findings lend support to preclinical models suggesting that ACE may impact inflammation 

via the gut microbiome, modulated by PUFA intake. First, multiple adversities experienced 

during a woman’s early life influenced gut microbiota composition, paralleling rodent 

experiments that demonstrate persistent effects of ELS on the gut microbiota (Pusceddu et al., 

2015). Further, relative abundance of several gut taxa were associated with cytokine and cortisol 

response to TSST; to our knowledge, no human studies have reported associations between gut 

microbiota and acute glucocorticoid-immune response to stress, although rodent models indicate 

altered gut bacterial community composition is associated with peripheral inflammation during 

pregnancy (Gur et al., 2017; Jašarević et al., 2017). Finally, greater dietary intake of ω-3 PUFAs 

was associated with a diminished inflammatory response to acute stress among high ACE 

pregnant women, suggesting protective effects of ω-3s in this high risk population. Together, 

these findings support a model in which ACE impacts gut microbiota, and gut microbiota 

influences inflammation, with modulation by ω-3 PUFA intake. To advance this model, full 

mediation-moderation analyses should be performed in a larger sample to elucidate the 

relationships among ACE, the gut microbiome, diet and inflammation. 
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TABLE AND FIGURE CAPTIONS 

Table 1. Sample characteristics. Demographic and health information are presented for low 

and high ACE participants. Means and standard deviations are presented for normally distributed 

data. Medians and interquartile range (IQR) are reported for non-normally distributed data. P-

values are presented for Chi-Square test, t-test or Wilcoxon-Mann-Whitney test comparing low 

and high ACE groups.  

Table 2. Dietary macronutrient intake. Daily dietary intake is presented for low and high ACE 

participants. Daily dietary intake values were determined by taking the mean of three days of diet 

data obtained from 24-hour food recalls. Means and standard deviations are presented for 

normally distributed data. Medians and interquartile range (IQR) are reported for non-normally 

distributed data. P-values are presented for t-test or Wilcoxon-Mann-Whitney test comparing low 

and high ACE groups.  

Table 3. Response to laboratory stressor. Subjective and physiological response to the Trier 

Social Stress Test (TSST) are presented for low and high ACE participants. Means and standard 

deviations are presented for normally distributed data. Medians and interquartile range (IQR) are 

reported for non-normally distributed data. P-values are presented for t-test or Wilcoxon-Mann-

Whitney test comparing low and high ACE groups.  

Figure 1. Relative abundance of gut taxa in low and high ACE participants. Controlling for 

gestational age at time of stool collection, BMI, and dietary fiber intake, high ACE participants 
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had higher differential abundance of Prevotella (FDR-adjusted p-value, q=5.7x10^-13), and 

trend toward lower abundance of Eubacterium (p=0.019, q=0.15) and Phascolarctobacterium 

(p=0.041, q=0.22) than low ACE participants. 

Figure 2. Gut microbiota associations with cytokine and cortisol response to acute stress.  

Controlling for gestational age at time of stool collection, BMI, and dietary fiber intake, cortisol 

response to stress was positively associated with abundance of Rikenellaceae (q=0.019) and 

Dialister (q<0.001), and negatively with Bacteroides (q=0.019). IL-6 AUC was positively 

associated with abundance of Bacteroides (q<0.001), and negatively with Clostridiales 

(q=0.033), Lachnospiraceae (q=0.0033), Dialister (q=0.0038), and Enterobacteriaceae 

(q=0.0038). Similarly, TNF-α AUC was positively associated with abundance of Bacteroides 

(q=0.0006), Prevotella (q=0.015), and Megasphaera (q=0.015) and negatively with 

Ruminococcaceae (q=0.0006). Finally, CRP AUC was positively associated with abundance of 

Ruminococcaceae (q=0.034) and Megasphaera (q=0.027). 

Figure 3. Dietary ω-3 PUFA associations with IL-6 response to stress in high and low ACE 

women.  a) There was a significant ACE x DHA interaction for IL-6 AUC, in which high ACE 

women with high intake of the ω-3 PUFA DHA exhibited a lower IL-6 AUC (t(11) = -2.413,  p 

= 0.03). b) There was a trend-level interaction for ACE x EPA, so that in high ACE women, high 

intake of the ω-3 PUFA EPA was associated with lower IL-6 AUC (t(11) = -2.181,  p = 0.05). c) 

Similarly, there was a trend-level stearidonic acid x ACE interaction for IL-6 AUC, in which 

high intake of the ω-3 PUFA stearidonic acid, a precursor of EPA, associated with lower IL-6 

AUC among high ACE women (t(11) = -2.087,  p = 0.06). 
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Figure 1. Relative abundance of gut taxa in low and high ACE participants   

 

 

 

 

 

Figure 2. Gut microbiota associations with cytokine and cortisol response to acute stress 
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Figure 3. Dietary ω-3 PUFA associations with IL-6 response to stress in high and low ACE 

women 
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Table 1. Sample characteristics.  

 

  

Low ACE High ACE p-value 

n 

 

25 23 

 Age, years (Mean (SD)) 29.80  (5.21) 25.98 (4.99) 0.013 

Weight, lbs (Mean (SD)) 178.04 (44.81) 167.09 (27.16) 0.315 

Prepregnancy BMI (Mean (SD)) 27.98 (8.62) 25.53(3.72) 0.212 

Gestational Age at Recruitment, weeks (Mean 

(SD)) 27.31 (2.92) 27.20 (2.26) 0.885 

Marital Status (n (%)) Single/Separated 13 (52.00) 16 (69.57) 0.25 

 

Married/Domestic 

Partnership 12 (48.00) 7 (30.43) 

 Income (n (%)) Less than $50K 9 (36.00) 15 (65.22) 0.082 

 

Greater than $50k 16 (64.00) 8 (34.78) 

 Employment (n (%)) Employed 20 (83.33) 15 (65.22) 0.193 

 

Unemployed 4 (16.67) 8 (34.78) 

 Education (n (%)) Less than College Grad 10 (40.00) 15 (65.22) 0.094 

 

College Graduate or 

higher  15 (60.00) 8 (34.78) 

 Race (n (%)) Caucasian 13 (52.00) 8 (34.78) 0.479 

 

African American 10 (40.00) 13 (56.52) 

 

 

Other 2 (8.00) 2 (8.70) 

 Ethnicity (n (%)) Non-Hispanic 24 (96.00) 19 (82.61) 0.18 

 Hispanic 1 (4.00) 4 (17.39)  

ACE-Q (Median [IQR]) 0 [0.0, 1.0] 3 [2.5, 4.0] <.001 

PSS (Median [IQR]) 11 [7, 13] 10 [5.5, 12.5] 0.717 



  

 

 49 

EPDS (Median [IQR]) 5 [3, 6] 3 [1.5, 6.0] 0.258 

STAI State (Median [IQR]) 27 [22, 33] 23 [21, 27] 0.112 

STAI Trait (Median [IQR]) 30 [27.0, 36.0] 28 [23.5, 34.0] 0.225 

TLEQ Events (Median [IQR]) 4 [2.0, 6.0] 7[4.0, 14.50] 0.011 

PSQI (Median [IQR]) 5 [3.0, 6.0] 6 [4.0, 7.5] 0.429 

Weight at Delivery, grams (Mean (SD)) 

3086.96 

(708.57) 3188 ( 435.68) 0.566 

Gestational Age at Delivery, weeks (Mean (SD)) 39 (2.0) 39 (2.5) 0.641 

Apgar Score, 1 minute (Median [IQR]) 8 [8, 9] 8 [8, 9] 0.562 

Apgar Score, 5 minutes (Median [IQR]) 9 [9, 9] 9 [9 ,9] 0.969 

Abbreviations: Adverse Childhood Experiences Questionnaire (ACE-Q), Body Mass Index 

(BMI), Edinburgh Postnatal Depression Scale (EPDS), interquartile range (IQR), Pittsburgh 

Sleep Quality Index (PSQI), Perceived Stress Scale (PSS), Standard Deviation (SD), State-Trait 

Anxiety Inventory (STAI), Traumatic Life Events Questionnaire (TLEQ) 

 

 

Table 2. Daily dietary macronutrient intake. 

 Low ACE High ACE 

p-

value 

n 25 23  

Energy (kilocalories) 1956.24 (452.77) 2001.29 (474.94) 0.738 

Total fat (g) 78.17 [56.62, 99.36] 70.77 [63.22, 98.09] 0.942 

Cholesterol (mg) 312.41 [231.03, 372.13] 305.03 [236.53, 397.12] 0.584 

Dietary fiber (g) 16.23 [11.54, 24.88] 16.98 [11.85, 21.57] 0.992 

Saturated fatty acids (g) 27.10 [17.99, 36.86] 26.70 [20.06, 30.99] 0.975 

Trans fats (g) 2.00 [1.38, 2.63] 1.89 [1.31, 2.11] 0.57 

Monounsaturated fats (g) 26.28 [20.79, 33.59] 24.09 [19.51, 30.62] 0.828 

Polyunsaturated fatty acids (g) 16.99 [13.87, 21.61] 15.60 [13.43, 22.06] 0.893 
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Omega-3 fatty acids (g) 1.93 [1.54, 2.30] 2.11 [1.27, 2.91] 0.427 

Linoleic acid 18:2 (g) 14.61 [11.61, 18.95] 12.86 [11.47, 18.60] 0.733 

Linolenic acid 18:3 (g) 1.80 [1.20, 2.06] 1.64 [1.17, 2.57] 0.893 

Arachidonic acid 20:4 (g) 0.16 [0.12, 0.19] 0.17 [0.14, 0.24] 0.216 

Eicosapentaenoic acid (EPA) 20:5 (g) 0.01 [0.01, 0.02] 0.02 [0.01, 0.06] 0.063 

Docosapentaenoic acid (DPA) 22:5 (g) 0.02 [0.01, 0.03] 0.03 [0.02, 0.04] 0.14 

Docosahexaenoic acid (DHA) 22:6 (g) 0.04 [0.02, 0.10] 0.05 [0.03, 0.11] 0.337 

Stearidonic acid 18:4 (g) 0.00 [0.00, 0.01] 0.00 [0.00, 0.02] 0.685 

Abbreviations: grams (g), milligrams (mg) 

 

 

Table 3. Response to laboratory stressor. 

  

Low ACE High ACE p-value 

n 

 

10 9 

 Pulse Mid-stressor, bpm (mean (sd)) 106.75 (13.96) 104.38 (26.23) 0.824 

STAI State Pre-stressor (median [IQR]) 

24.00 [20.25, 

31.25] 

26.00 [21.00, 

31.00] 0.537 

STAI State Post-stressor (median [IQR]) 

44.50 [30.25, 

48.50] 

46.00 [41.00, 

58.00] 0.307 

Abbreviations: beats per minute (bpm), State-Trait Anxiety Inventory (STAI) 
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HIGHLIGHTS 

 Adverse childhood experiences (ACEs) predicted higher gut Prevotella abundance. 

 Cytokine response to acute stress was associated with abundance of specific gut taxa. 

 Dietary ω-3 PUFA intake normalized cytokine response to stress in high ACE women. 


